fragrance retention, release and sensory perception from surfactant-rich rinse-off cosmetics

session: sensory evaluation of fats

17th AOCS Latin American Congress and Exhibition on Fats, Oils, and Lipids
September 11–14, 2017

martin vethamuthu, sergio lira, edward diantonio, hani fares and linda foltis

ashland.com / efficacy usability allure integrity profitability™
agenda

critical role of fragrance oils in cosmetics

in-vivo instrumental method to evaluate fragrance impact
- liquid body wash with polymer technology
- soap bars with polymer technology
- screening polymers for fragrance retention/release

review of innovations: fragrance encapsulation

testing stability and performance of fragrance encapsulates
- leakage potential and capsule integrity in formulations
- expert performance evaluation

conclusion
solving for efficient delivery of fragrance

challenge: very low level of fragrance deposited from rinse-off cosmetics

product sight, smell, touch

mood & sensorial experience

multisensory perception

consumer satisfaction / repurchase

fragrance impact vs investment

Ashland always solving
critical role of fragrance oils in cosmetics

- delivers a pleasing scent
- masks an unpleasant odor
- immediate / lingering scent provides a hedonic impact
- reinforces perception of the products purpose and efficacy
- fragrances are considered the most effective “value-booster” and “brand differentiators” in cosmetics
fragrance deposition from body wash

new method

daily conditioning body wash is a prototype that contains a polymeric deposition technology (GHPTMC)
sampling setup - twister bar

- Sample preparation: an area of 18cm² of the volar forearm was washed with the cleansing formulation for 30 seconds, wait 10 seconds, and rinsed with tap water for 30 seconds then towel dried.

- The washed area of the arm was exposed to the twister bar setup for 15 minutes. This step is repeated at 1 hour intervals, three times, for head space extraction.

- After extraction the twister bar is removed and placed into clean glass thermal desorption tubes for fragrance analysis.
GC/MS with GERSTEL MPS robotic sampler, thermal desorption unit (TDU), and cooled injection system (CIS) option is used to monitor the fragrance release profile as a function of time.
comparison of SPME fiber to twister bar
conditioning polymer enhances fragrance deposition on skin after rinse

Guar hydroxypropyltrimonium chloride
(GHPTMC: N-Hance™ CCG45)
results from fragrance evaluator

Formulation with N-Hance CCG-45 (GHPTMC) shows improved initial bloom, deposition and retention on skin

- 1 – no scent
- 2 – Weak
- 3 – Medium
- 4 – Moderately Strong
- 5 - Strong
polymers tested – soap bar study

benecel™ K200M
hydroxypropylmethylcellulose

N-Hance SP-100
acrylamidopropyltrimonium chloride/acrylamide copolymer

n-hance™ 3196
guar hydroxypropyltrimonium chloride (GHPTMC)

ceraphyl™ RMT
maleic anhydride/ castor oil adduct (1:1)
superior fragrance deposition and reduced cracking
all polymers tested significantly enhances dihydro-myrcenol retention on skin
screening of polymer N-Hance SP100: effect of concentration and no polymer
review of innovations - encapsulates

- capture perfume oils
- protect & store in formulation
- slow and sustained release
- triggers - UV light, heat, pH, rubbing, hydrolysis, enzymes, O₂

current technologies
- polymeric shell around fragrance oil composed of melamine resin crosslinked with formaldehyde through interfacial precipitation
- poly-urea based shell crosslinked with isocyanate through interfacial polymerization

new technology
- melamine/formaldehyde and amine free shell chemistry
- more surfactant tolerant shell
- fragrance loading ~ 30%
- size of capsules 5-30 microns
formulations tested

Standard SLES/CAPB surfactant system tested with 1.0% total fragrance

- 1: 100% Fragrance Oil
- 2: 80% Fragrance Oil/20% Encapsulated Fragrance
- 3: 50% Fragrance Oil/50% Encapsulated Fragrance
- 4: 0% Fragrance Oil/100% Encapsulated Fragrance
acceptable viscosity over time at 25°C and 45°C

Viscosity over time 25°C formulas

Viscosity over time 45°C formulas

1% Encapsulate in 12 Weeks
1% encapsulate in surfactant formulation
45°C & 25°C after 90 days

encapsulates remain intact after 90 days in both
temperature conditions

40X magnification
GERSTEL MPS as headspace autosampler coupled to agilent technologies GC 7890B with MPS

- 180 samples, 1g each
- Critical for all samples to be filled same time
- Samples removed at scheduled time intervals for measuring GC head space of fragrance notes
formulation with 1% encapsulates shows greatest protection & lowest leakage of fragrance
at 45°C, the formulations with higher level of neat fragrance shows less protection & higher leakage

Limonene peak at 45°C

- Red: 1% Fragrance 45°C
- Purple: 0.2% Encapsulate +0.8% Fragrance 45°C
- Green: 0.5% Encapsulate +0.5% Fragrance 45°C
- Blue: 1% Encapsulate 45°C

Graph Details:
- X-axis: Time (weeks)
- Y-axis: GC area count
Formulations with encapsulated fragrance options show longer lasting fragrance perception.
conclusions

- perfume design and creation of novel fragrance oils are essential steps to satisfy consumer need in cosmetic products
- use of polymeric ingredients can enhance the deposition of fragrances from liquid and bar soap formulations
- encapsulation of fragrance oils can lead to improved fragrance intensity, bloom and longevity
- an *In-Vivo* instrumental method was used to evaluate and differentiate fragrance impact
- melamine, formaldehyde and amine free fragrance encapsulates with loadings above 30% can be created to protect fragrance oils from leakage with good capsule integrity as demonstrated by testing stability for 12 weeks
- next steps: develop method for evaluating bloom in shower
acknowledgements

- bradford team: abdul Hussain, kishor mistry, ben sales

- ROA team for soap bars: angelito delos reyes; nilesh dhole; s. ganesh; gwendolyn neoh

- bridgewater fragrance evaluation: linda melilo

- presentation review team: linda foltis; william davis; sang-tae kim; jason yearout; carolmarie brown

- robertet team for fragrance design
thank you

questions?
The information contained in this presentation and the various products described are intended for use only by persons having technical skill and at their own discretion and risk after they have performed necessary technical investigations, tests and evaluations of the products and their uses. This material is for informational purposes only and describes the scientific support for the use of the products described herein as an ingredient in cosmetic products intended to enhance appearance and other cosmetic benefits or to enhance performance of an end product. Certain end uses of these products may be regulated pursuant to rules governing medical devices or other regulations governing drug uses. It is the purchaser’s responsibility to determine the applicability of such regulations to its products. While the information herein is believed to be reliable, we do not guarantee its accuracy and a purchaser must make its own determination of a product’s suitability for purchaser’s use, for the protection of the environment, and for the health and safety of its employees and the purchasers of its products.

Neither Ashland nor its affiliates shall be responsible for the use of this information, or of any product, method, formulation, or apparatus described in this brochure. Nothing herein waives any of Ashland’s or its affiliates’ conditions of sale, and no statement, information and data is to be taken as a guarantee, an express warranty, or an implied warranty of merchantability or fitness for a particular purpose, or representation, express or implied, for which Ashland and its affiliates assume legal responsibility. We also make no warranty against infringement of any patents by reason of purchaser’s use of any information, product, method or apparatus described in this presentation.

The testing information (the “Testing Information”) has been gratuitously provided by Ashland. The Testing Information is based on many factors beyond Ashland’s control, including but not limited to, the conditions prevailing when the testing was conducted, and in some cases, is based on data generated with development samples of the Active Ingredient. Although it is intended to be accurate, ASHLAND DISCLAIMS ANY AND ALL LIABILITY, EITHER EXPRESS OR IMPLIED. The Testing Information is confidential or proprietary to Ashland, and may not, except as provided below, be disclosed to any third party. You may not make commercial use of the Testing Information, or make claims with respect to your products based the Testing Information, without the written agreement with Ashland covering such use.